normLp

Does not compute Schatten norm, but L^p-Norm of measurements (equals Schatten norm up to constant if p = 2).

Contents

Syntax

normA = normLp(A,seti)

Input Arguments

Output Arguments

More About

$\texttt{normA} = \|A\|_P \ \texttt{seti.dSMeas}^{1/P} \quad$ with $P = \texttt{seti.pNorm}$.

See Also

Code

function normA = normLp(A,seti)
normA = norm(A(:),seti.pNorm)*seti.dSMeas^(1/seti.pNorm);
end