gmresKelley
GMRES linear equation solver.
Contents
Syntax
x = gmresKelley(x0, b, atv, params)
Description
x = gmresKelley(x0, b, atv, params) computes the solution x of linear equation atv(x) = b with matrix-vector product routine atv, and right hand side b. The initial vector is x0. Further parameters are given in params.
Implementation following Saad-Schultz.
C. T. Kelley, July 10, 1994
This code comes with no guarantee or warranty of any kind.
Output Arguments "error" and "total_iters" can be added by changing the code in function [x, error, total_iters] = gmres(x0, b, atv, params).
Requires the function givapp, that is given as subfunction.
Example
x0 = [1; 1]; A = [1 2; 3 4]; b = [4.5; 9.5]; atv = @(x) A*x; tol = 1E-6; x = gmresKelley(x0, b, atv , [tol ,100,1]);
Result:
x =
0.5000 2.0000
Input Arguments
- x0 : initial iterate
- b : right hand side
- atv : a matrix-vector product routine atv must return Ax when x is input the format for atv is function ax = atv(x). Note that for GMRES we incorporate any preconditioning into the atv routine.
- params : three dimensional vector to control iteration
- params(1) = relative residual reduction factor,
- params(2) = max number of iterations,
- params(3) (Optional) = reorthogonalization method: 1 -- Brown/Hindmarsh condition (default), 2 -- Never reorthogonalize (not recommended), 3 -- Always reorthogonalize (not cheap!).
Output Arguments
- x : solution
Additional outputs after code changing:
- error : vector of residual norms for the history of the iteration.
- total_iters : number of iterations.
License Information
Note that the source code of this file was not written by the authors of the toolbox IPscatt. It contains the GMRES by Kelley that is faster than the standard GMRES.
This method is describe in Ch. 3.4 of the following book: C. Tim Kelley. Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied Mathematics, 1995.
The source code is available at: C. Tim Kelley. Iterative methods for linear and nonlinear equations. companion software, 2002. https://de.mathworks.com/matlabcentral/fileexchange/2198-iterative-methods-for-linear-and-nonlinear-equations/content/kelley/gmres.m Accessed: March 2017.
The corresponding license is available at: https://de.mathworks.com/matlabcentral/fileexchange/view_license?file_info_id=2198
In the following we will cite this license (Accessed: May 2017):
License
Copyright (c) 2016, C.T. Kelley All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Code
function x = gmresKelley(x0, b, atv, params)
% % initialization % n=length(b); errtol=params(1); kmax=params(2); reorth=1; if length(params) == 3 reorth=params(3); end x=x0; % % h=zeros(kmax); v=zeros(n,kmax); c=zeros(kmax+1,1); s=zeros(kmax+1,1); if norm(x) ~=0 r = b-feval(atv,x); else r = b; end rho=norm(r); g=rho*eye(kmax+1,1); errtol=errtol*norm(b); error=[]; % % test for termination on entry % error=[error,rho]; total_iters=0; if(rho < errtol) return end % v(:,1)=r/rho; beta=rho; k=0; % % GMRES iteration % while((rho > errtol) & (k < kmax)) k=k+1; v(:,k+1)=feval(atv,v(:,k)); normav=sqrt(v(:,k+1)'*v(:,k+1)); %originally norm(v(:,k+1)); % % Modified Gram-Schmidt % for j=1:k h(j,k)=v(:,j)'*v(:,k+1); v(:,k+1)=v(:,k+1)-h(j,k)*v(:,j); end h(k+1,k)=sqrt(v(:,k+1)'*v(:,k+1)); %originally norm(v(:,k+1)); normav2=h(k+1,k); % % Reorthogonalize? % if (reorth == 1 & normav + .001*normav2 == normav) | reorth == 3 for j=1:k hr=v(:,j)'*v(:,k+1); h(j,k)=h(j,k)+hr; v(:,k+1)=v(:,k+1)-hr*v(:,j); end h(k+1,k)=norm(v(:,k+1)); end % % watch out for happy breakdown % if(h(k+1,k) ~= 0) v(:,k+1)=v(:,k+1)/h(k+1,k); end % % Form and store the information for the new Givens rotation % if k > 1 h(1:k,k)=givapp(c(1:k-1),s(1:k-1),h(1:k,k),k-1); end nu=sqrt(h(k:k+1,k)'*h(k:k+1,k)); %originally norm(h(k:k+1,k)); if nu~=0 % c(k)=h(k,k)/nu; c(k)=conj(h(k,k)/nu); s(k)=-h(k+1,k)/nu; h(k,k)=c(k)*h(k,k)-s(k)*h(k+1,k); h(k+1,k)=0; g(k:k+1)=givapp(c(k),s(k),g(k:k+1),1); end % % Update the residual norm % rho=abs(g(k+1)); error=[error,rho]; end % % At this point either k > kmax or rho < errtol. % It's time to compute x and leave. % y=h(1:k,1:k)\g(1:k); total_iters=k; x = x0 + v(1:n,1:k)*y; return
Code: subfunction givapp
function vrot=givapp(c,s,vin,k) % Apply a sequence of k Givens rotations, used within gmres codes % % C. T. Kelley, July 10, 1994 % % This code comes with no guarantee or warranty of any kind. % % function vrot=givapp(c, s, vin, k) % vrot=vin; for i=1:k w1=c(i)*vrot(i)-s(i)*vrot(i+1); % w2=s(i)*vrot(i)+c(i)*vrot(i+1); w2=s(i)*vrot(i)+conj(c(i))*vrot(i+1); vrot(i:i+1)=[w1,w2]; end